Telegram Group & Telegram Channel
🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/proglib_academy/2772
Create:
Last Update:

🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст

BY Proglib.academy | IT-курсы


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/proglib_academy/2772

View MORE
Open in Telegram


Proglib academy | IT курсы Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Proglib academy | IT курсы from us


Telegram Proglib.academy | IT-курсы
FROM USA